基于注意力机制和ACT网络的人脸图像修复

打开文本图片集
Face image inpainting based on attention mechanism and ACT network
TENGLin1,²,ZHANGQian1²,XU Kaili² (1.SchoolofData Scienceand InformationEngineering,Guizhou Minzu University,Guiyang 55oo25,China; 2.KeyLaboratoryofPatternRecognitionand InteligentSystemsofGuizhouProvince,Guiyang55O025,China)
Abstract:A faceimage inpainting method basedonconvolutional block atentionmodule(CBAM)andaggregated contextualtransformation(ACT)network isproposed tomakethecompletionofmissingsemanticfeaturesinfacialimages more realisticandtoenhancetherecoveryofdetailedinformation.Inthismethod,thetwobranchesofthebaselinemodelareretained. Inthesemanticandimagfilteringbranches,theCBAMlayersareaddedtocapturethecriticaldetailinformationforfilingthe mising areas intheimages.Thebaseline residual blocksarereplaced withACTresidual blocks,which can preserve therich detailsoutsidethemissingareasandcaptureabundantcontextualinformation.Thismadethesemanticinformationfilinginthis branchmoreaccurate,efectivelyremovedartifactsandenrichedimagedetails.Inthekernelpredictionbranch,thetwomodules areadded toenhancethereceptivefieldandcontextualreasoning perception when extracting image features,makingthedynamic predictionof filtering kernelsmore precise.Thismethod wasvalidatedontheCelebA-HQdataset,showing improvements in quantitative metrics such as PSNR (peak signal-to-noise ratio),SSIM (structural similarity index measure)and L1 . The qualitative repairresultsarealsoclearerandmorenatural.Thestudyconfirmsthattheproposed methodhavegoodeffectivenessforfacial image inpainting.
Keywords:image inpainting; CBAMatentionmechanism;ACTnetwork;encoder-decoder;facial image inpainting;mage filtering
0 引言
图像修复是指重建图像中缺失区域的任务。(剩余10343字)