T-BOI:一种融合时间和行为顺序信息的序列推荐系统

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:TN711-34;TP391.41 文献标识码:A 文章编号:1004-373X(2025)13-0088-08

T-BOI: A sequence recommendation system integrating temporal andbehavioralorderinformation

ZHANG Jing,ZHOU Diao

(CollegeofArtificialIntellgence,NorthChina UniversityofScienceandTechnology,TangshanO63210,China)

Abstract:Recommendation systems basedonuser behavior modelingare widelyused inrecall,sorting,and otherstages, includingsequentialrecommendationsandsesionrecommendations.Inthesequencerecommendation,somebehaviorrecords thatarenotrelatedtothenextbehaviormaybeintroducedduetoexcesivelylongsequencesetingsHowever,thesesion-based recommendation focusesonmediumandshort-termrecommendations,soithaslimitationsincapturinglong-termorgeneral interests.Inviewoftheabove,asequencerecommendationsystem(T-BOl) thatintegratestemporalandbehavioralorder informationhasbeenproposed,makingitsuitableforlong-termandshort-terminterestrecommendations.Intheproposed method,thefeaturerepresentationunitmodule,behaviorweightunitmodule,behaviorsequencerepresentationmodel,and behaviorcategoryoutputunit modulein T-BOIareused to process andobtainthe final predictionresult.The proposed methodis comparedwithsomeadvancedmodels.Thevalidationonpublicdatasetsshowsthat therecommendationsystem hasgood recommendation effect.

Keywords:sequencerecommendation;recommendationsystem;multi behaviorrecommendation;longand short-term preference;position encoding;time information

0 引言

在网络高速发展的时代,互联网用户在网上留下了大量的历史行为信息,从这些信息中,往往希望能够分析出用户的个性偏好,以协助提供更佳的互联网服务。(剩余15189字)

monitor