一种在线更新的单目视觉里程计

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘 要:现有的基于深度学习的视觉里程计(visual odometry,VO)训练样本与应用场景存在差异时,普遍存在难以适应新环境的问题,因此提出了一种在线更新单目视觉里程计算法OUMVO。其特点在于应用阶段利用实时采集到的图像序列在线优化位姿估计网络模型,提高网络的泛化能力和对新环境的适用能力。该方法使用了自监督学习方法,无须额外标注地面真值,并采用了Transformer对图像流进行序列建模,以充分利用局部窗口内的视觉信息,提高位姿估计精度,以避免传统方法只能利用相邻两帧图像来估计位姿的局限,还可以弥补采用RNN进行序列建模无法并行计算的缺点。(剩余17279字)

目录
monitor
客服机器人