基于反向延长增强的对抗生成网络推荐算法

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘 要:针对现有序列推荐模型因数据稀疏性严重难以达到最优性能的问题,提出了一种基于反向延长增强的生成对抗网络推荐算法。该方法通过对交互序列进行延长增强来获取高质量的训练数据,以缓解数据稀疏性带来的模型训练不充分的问题。首先,使用伪先验项将项目序列进行反向延长,深化项目序列特征;其次,延长增强的对象由短序列更改为所有用户序列,充分挖掘长序列中富含的上下文信息,缓解了增广序列中伪先验项占比过大而带来的噪声问题;最后,使用共享项目嵌入的生成对抗网络,通过判别器与生成器联合训练以提高模型推荐性能。(剩余16362字)

目录
monitor
客服机器人