基于知识表示学习的KBQA答案推理重排序算法

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘 要:现有的知识库问答(KBQA)研究通常依赖于完善的知识库,忽视了实际应用中知识图谱稀疏性这一关键问题。为了弥补该不足,引入了知识表示学习方法,将知识库转换为低维向量,有效摆脱了传统模型中对子图搜索空间的依赖,并实现了对隐式关系的推理,这是以往研究所未涉及到的。其次,针对传统KBQA在信息检索中常见的问句语义理解错误对下游问答推理的错误传播,引入了一种基于知识表示学习的答案推理重排序机制。(剩余27141字)

目录
monitor
客服机器人