基于Se-ResNet50特征编码器的公共环境图像描述生成

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘 要:针对传统公共环境图像描述模型中编码器—解码器结构在编码过程中特征提取能力不足以及解码过程中上下文信息丢失严重的问题,提出了一种基于Se-ResNet50与M-LSTM的公共环境图像描述模型。将SeNet模块添加到ResNet-50的残差路径中得到改进残差网络提取图像特征,SeNet对特征的各个部分赋予权重生成不同的注意力特征图,再融合文本特征向量输入具有额外门控运算的改进长短期记忆网络(M-LSTM)训练。(剩余14465字)

目录
monitor