基于最优子段深度学习的手指运动想象脑电信号分类研究

打开文本图片集
摘 要:目前已有的手指运动想象脑电信号多分类任务的分类性能均难以达到可用性能。在详细分析脑电信号时间尺度上的多种成分的基础上,设计一种信号子段提取的自监督子网络,然后把子段输入下一个子网络用于信号分类,两个子网综合成一个自监督混合的多任务深度网络。在训练阶段,子段提取子网络针对每条脑电信号提取不同的子段,由后面的分类子网络来判断该子段是否最佳而自动调整子段位置,总体损失函数由两个子网络的两个损失函数加权而成,通过整体网络学习算法实现最佳子段信号的提取并获得最佳分类效果。(剩余12634字)