基于机器学习的肺部CT图像非刚性配准误差预测方法

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘 要:配准误差评估通常由人工完成,耗时费力;常用的Dice测度只关注组织边缘的配准误差,难以评估组织内部配准结果。针对以上问题,提出一种基于机器学习的肺部CT图像非刚性配准误差预测方法(PREML)。该方法首先构建形变场统计特征、形变场物理保真度特征和图像相似性特征三类特征,然后通过池化方法扩充特征数量,最后使用随机森林回归方法预测非刚性配准误差,并且使用自适应随机扰动方法模拟肺部配准误差空间分布,进一步提升形变场统计特征的配准误差表征能力。(剩余13629字)

目录
monitor