基于数据分布的聚类联邦学习

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘 要:联邦学习(federated learning)可以解决分布式机器学习中基于隐私保护的数据碎片化和数据隔离问题。在联邦学习系统中,各参与者节点合作训练模型,利用本地数据训练局部模型,并将训练好的局部模型上传到服务器节点进行聚合。在真实的应用环境中,各节点之间的数据分布往往具有很大差异,导致联邦学习模型精确度较低。(剩余14561字)

目录
monitor