一种基于高阶累积量的因果结构学习算法

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘 要:从观测数据中学习因果结构具有重要的应用价值。目前,一类学习因果结构的方法是基于函数因果模型假设,通过检验噪声与原因变量的独立性来学习因果结构。然而,该类方法涉及高计算复杂度的独立性检验过程,影响结构学习算法的实用性和鲁棒性。为此,提出了一种在线性非高斯模型下,利用高阶累积量作为独立性评估的因果结构学习算法。(剩余12275字)

目录
monitor