基于课程学习的无监督常识问答模型

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘 要:无监督常识问答是利用机器自动生成问答数据来对模型进行训练的问答模型,目前方法生成的问答数据中存在噪声数据和问题的难度随机的问题。提出一种基于课程学习的无监督常识问答模型,首先根据知识生成问答数据集,再对问答数据集进行多样化评估和流畅性评估,结合两个评估结果进行数据过滤,去除噪声数据;最后根据课程学习策略,使用干扰项与正确答案的相似度作为问题难度评估标准,使得模型根据难度等级来进行训练。(剩余13439字)

目录
monitor