注册帐号丨忘记密码?
1.点击网站首页右上角的“充值”按钮可以为您的帐号充值
2.可选择不同档位的充值金额,充值后按篇按本计费
3.充值成功后即可购买网站上的任意文章或杂志的电子版
4.购买后文章、杂志可在个人中心的订阅/零买找到
5.登陆后可阅读免费专区的精彩内容
打开文本图片集
摘 要:领域自适应将源域上学习到的知识迁移到目标域上,使得在带标签数据少的情况下也可以有效地训练模型。采用伪标签的领域自适应模型未考虑错误伪标签的影响,并且在决策边界处样本的分类准确率较低,针对上述问题提出了基于加权分类损失和核范数的领域自适应模型。该模型使用带有伪标签的可信样本特征与带有真实标签的源域样本特征构建辅助域,在辅助域上设计加权分类损失函数,降低错误伪标签在训练过程中产生的影响;加入批量核范数最大化损失,提高决策边界处样本的分类准确率。(剩余12558字)
登录龙源期刊网
购买文章
基于加权分类损失和核范数的领域自适应模型
文章价格:6.00元
当前余额:100.00
阅读
您目前是文章会员,阅读数共:0篇
剩余阅读数:0篇
阅读有效期:0001-1-1 0:00:00