融合多模态自监督图学习的视频推荐模型

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘 要:现有视频推荐方法在算法框架中引入图神经网络来建模用户—视频协同关系,学习用户和视频的表示向量,但是节点中包含的冗余噪声会限制模型的建模能力。针对以上问题,提出了一种融合多模态自监督图学习的视频推荐模型(IMSGL-VRM)。首先,在图数据增强模式下构建自监督的图神经网络模型学习多模态视图下的节点特征表示,以提升节点表示的泛化能力;其次,为了得到推荐结果的多样性,设计了多兴趣提取模块从用户历史的交互视频序列中建模用户的多兴趣;最后,融合多模态的用户多兴趣表示和视频的特征表示,使用多样性可控的方式输出推荐结果,以满足视频推荐的多样性需求。(剩余15589字)

目录
monitor
客服机器人