鲁棒结构正则化非负矩阵分解

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘 要:现有的非负矩阵分解方法既忽略数据的非局部结构,又难以有效应对噪声和野值点。为了解决上述问题,提出一种新的用于聚类的鲁棒结构正则化非负矩阵分解算法。所提出的算法分别构建一个近邻图和一个最大熵图描述数据的局部结构和非局部结构,并使用L2,1范数代价函数尝试解决噪声问题,从而学习到鲁棒具有判别力的表征。(剩余13549字)

目录
monitor
客服机器人