面向交通流量预测的多头注意力时空卷积图网络模型

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘 要:为了充分获取交通流量数据中隐藏的复杂动态时空相关性,提高交通流量预测精度,提出一种多头注意力时空卷积图网络模型MASCGN。首先,采用多头注意力机制为路网中的交通传感器节点自动分配注意力权重,实现对不同邻居节点的权值自适应匹配,充分获取空间相关性;其次,采用带有门控和注意力机制的时空卷积网络充分提取时间序列相关性,并使用残差块结构实现时空卷积层之间的连接,使得模型更具有泛化能力;最后,分别提取周相关、日相关、邻近时间的序列数据,输入三个并行的时空组件以挖掘周、日、邻近三个时间窗口间的时间周期相关性,并通过全连接层获取最终的交通流量预测结果。(剩余15024字)

目录
monitor
客服机器人