生成对抗网络改进角度与应用研究综述

打开文本图片集
摘 要:生成对抗网络(GAN)作为一种新兴的生成式模型,逐渐发展应用于图像生成、三维重构、跨模态转换等领域,有效解决了常规卷积神经网络在图像生成类任务方面效率低下的问题,填补了深度学习在图像生成领域上的短板。为了帮助后续研究人员快速并全面了解GAN,根据近年来的文献对GAN的改进模型进行梳理。首先从网络结构、目标函数两个角度介绍了GAN的基本原理,然后对GAN的各种衍生模型从改进角度、应用类型两个方面进行详细的阐述和总结,分别从主观定性、客观定量和任务专项评估等角度对生成图像的质量和多样性进行归纳分析,最后讨论了GAN系列模型近年来的一些核心问题与最新研究进展,并分析了未来的发展趋势。(剩余39327字)