基于改进全局—局部注意网络的室内场景识别方法

打开文本图片集
摘 要: 由于卷积神经网络(CNN)大多侧重于全局特征学习,忽略了包含更多细节的局部特征信息,使得室内场景识别的准确率难以提高。针对这一问题,提出了基于改进全局—局部注意网络(GLANet)的室内场景识别方法。首先,利用GLANet捕捉场景图像的全局特征和局部特征,增加图像特征中的细节信息;然后,在局部网络中引入non-local注意力模块,通过注意力图和特征图的卷积来进一步保留图像的细节特征,最后融合网络不同阶段的多种特征进行分类。(剩余11914字)