基于加权融合字词向量的中文在线评论情感分析

打开文本图片集
摘 要: 随着社交网络平台的广泛使用,涌现出大量蕴涵丰富情感信息的在线评论文本,分析评论中表达的情感对企业、平台等具有重要意义。为了解决目前针对在线评论短文本情感分析中存在特征提取能力弱以及忽略短文本本身情感信息的问题,提出一种基于文本情感值加权融合字词向量表示的模型——SVW-BERT模型。首先,基于字、词级别向量融合表示文本向量,最大程度获取语义表征,同时考虑副词、否定词、感叹句及疑问句对文本情感的影响,通过权值计算得到文本的情感值,构建情感值加权融合字词向量的中文短文本情感分析模型。(剩余13733字)