横向联邦学习中PCA差分隐私数据发布算法

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘 要: 为了让不同组织在保护本地敏感数据和降维后发布数据隐私的前提下,联合使用PCA进行降维和数据发布,提出横向联邦PCA差分隐私数据发布算法。引入随机种子联合协商方案,在各站点之间以较少通信代价生成相同随机噪声矩阵。提出本地噪声均分方案,将均分噪声加在本地协方差矩阵上。一方面,保护本地数据隐私;另一方面,减少了噪声添加量,并且达到与中心化差分隐私PCA算法相同的噪声水平。(剩余9512字)

目录
monitor
客服机器人