基于深度学习的多目标运动轨迹预测算法

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘 要: 针对多目标运动轨迹预测过程中由于检测精度和实时性不足造成部分目标位置信息丢失和预测准确度不高问题,提出基于改进卡尔曼滤波的多目标轨迹运动轨迹预测(MMTP)算法。MMTP算法在目标检测阶段使用YOLOv4检测器提升目标检测的准确率和速度;在目标匹配阶段采用KM匹配算法将当前检测框的检测目标与上一时刻预测的预测框的目标进行数据关联,从而增强目标关联的准确性,避免目标遮挡、目标交错和漂移造成的目标丢失;在目标坐标预测阶段,提出改进卡尔曼滤波算法为每个运动目标预测下一帧位置坐标并画出预测框,提高非线性场景中目标坐标的预测精度,降低预测坐标的误差。(剩余13792字)

目录
monitor
客服机器人