基于多目标优化和深度学习的短期风功率组合预测

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘 要:针对风功率时间序列的非线性和波动性等特征,提出一种基于多目标优化和深度学习的风功率组合预测的方法。该方法基于完全自适应噪声集合经验模态分解,得到原始风功率序列的子序列集合,分别使用极限学习机、长短期记忆和时间卷积网络建立子序列预测模型并重构。基于此建立组合预测模型,应用多目标哈里斯鹰优化算法和深度确定性梯度策略求解最优组合权值。(剩余16074字)

目录
monitor