基于双曲空间的无监督视频异常检测方法

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:TP391 文献标志码:A 文章编号:1001-3695(2025)07-042-2234-07

doi:10.19734/j. issn.1001-3695.2024.08.0371

Abstract:Inthefieldofvideoanomalydetection,anomalouseventsoftendemonstratetemporalcontinuityandsimlarityExisting unsupervised methods typicallysegment videos into multipleclipsandrandomlyselectsubsets for training,disrupting the continuityofanomalouseventsandcausing thelossofcriticalspatiotemporalinformation.AditionallycurrntEuclidean space-basedmethodsencounterlimitationsinembeddngspacedimensionalitymakingitdificulttoefectivelycapturethelatent geometrichierarchyofvideodata.Toaddress these isues,thispaper introducedanovelunsupervisedvideoanomalydetection methodbasedonhyperbolic space.Itdesignedaspatiotemporalfeatureconstruction(STFC)module toextract temporalcorrelationsand featuresimilaritiesamong videosegments,mbedding themintoLorentzandPoincaréballhyperbolicspaces to learnrichervideorepresentationsthatmoreefectivelydistinguishnormalfromabnormal events.Experimentsshowthatthis method achieves AUC scores of 93.26% and 77.55% on the Shanghai Tech and UCF-Crime datasets,respectively,outperforming existingunsupervised video anomalydetectionmethods.Theseresultsconfirmtheadvantageof hyperbolic spaceincapturingthelatentgeometrichierarchyofvideodataandhighlightitspotential inenhancinganomalydetectioncapabilities.

KeyWords:unsupervised;video anomaly detection;Lorentz hyperbolicspace;Poincaréballhyperbolic space

0 引言

随着国家公共安全意识的不断增强,监控摄像头在街道、十字路口、银行和购物中心等公共场所的使用日益普及,旨在提高整体的公共安全水平。(剩余17085字)

试读结束

目录
monitor