基于高阶邻域信息交互的自监督异质图嵌入算法

  • 打印
  • 收藏
收藏成功


打开文本图片集

关键词:异质图;自监督算法;节点嵌入;高阶邻域

中图分类号:TP391 文献标志码:A 文章编号:1001-3695(2025)07-012-2011-07

doi:10.19734/j. issn.1001-3695.2024.11.0493

Abstract:Toaddress theissue thatcurrentself-supervised neuralnetwork algorithms donotconsider theimpactofhighorder node information whenobtaining neighborhood node weights,thispaper proposedaself-supervised heterogeneous graph embeddingalgorithmbasedonhigh-orderneighborhood informationinteraction(SSHGEA-HNI).Itenhancedlocaloptimization capabilitiesandmodelperformancebyaddingafeedforwardfullconnectedlayerintheattentionmechanism tocapturehighorderneighborhoodnodefeatures.Thealgorithmconsistedofalabel generationmoduleandanembeddinglearning module.The label generation module produced pseudo-labels for nodesthrough label propagation,which servedassupervisorysignals to guidetheembedding generationmodule to produceembeddings.Theembedding learning module generatedembeddings andattentioncoeffcientsthroughtheatentionmechanismbasedonhighorderneighborhoodinformationinteraction,withtheaentioncoeffcientsusedtoguidethelabelgeneration module toproduce pseudo-labels.Ineach iteration,thetwo modules shared node atentioncoeficients,promoting mutual utilizationandenhancementbetweenthetwo modules.Experimentswereconductedonfourreal heterogeneous graphdatasets,withimprovementsobserved intheclusteringand clasification tasksof most datasets.Theexperimental results demonstrate thatthe modelcan efectivelyutilize high-order node information.

Key words:heterogeneous graph;self-supervised algorithm;node embedding;high-order neighborhood

0 引言

近年来,由于图嵌入[1,2]在分析图结构数据过程中十分重要,导致图嵌人技术发展十分迅速。(剩余18124字)

目录
monitor