基于大语言模型的多任务生成式重构对话情绪识别

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:TP391 文献标志码:A 文章编号:1001-3695(2025)07-006-1964-08

doi:10.19734/j. issn. 1001-3695.2024.12.0486

Abstract:Emotionrecognition inconversation(ERC)isakey task indialogue systems research.However,existing models oftensuferfromoverfittng tospecificdatasetsanddialoguepatersduetothecomplexityofpipelinedsign,hichlimitstheir generalizationability.Toaddress thisisse,thisstudyproposedamulti-task generativeemotionrecognitioninconversatin(MGERC)model basedonlarge language models.The model introduced two auxiliarytasksbasedon pre-trained large language models;speakeridentifcationandtopic-basedemotionprediction.Thespeakeridentificationtaskaimed toimplicitlymodelthe relationshipsbetweeconversationaloles,lpingthemodelbeterunderstandmotionalxchangesbetween diffrentparticipants.The topic-based emotionprediction task predicted theglobalthemeoftheconversation,capturing thepotentialconnectionbetweentopicsandemotions,thusimproving emotionrecognitionaccuracybyincorporatingcontextualinformation.Aditionaly,M-GERCintroducedaknowledgeretrieval modulethatretrieveddomain-specificknowledgeandintegratedexteral knowledge to further enhance the model’sunderstanding ofcontext.Experimentalresultsshow that M-GERC significantlyoutperforms existing mainstream ERC models,achieving W-F1 improvements of 3.1% , 4.3% and 3.7% on the DailyDialog, MELD and EmoryNLP datasets,respectively.

Key Words:emotion recognition in conversation;large language models;topic;external knowledge

0 引言

“如果想要真正的智能机器,那么必须让它们能够理解情绪,而不仅仅是执行特定的任务。(剩余22100字)

目录
monitor