带频繁区域的空间并置模式挖掘方法

  • 打印
  • 收藏
收藏成功


打开文本图片集

关键词:空间并置模式挖掘;频繁区域;候选区域;拓展区域;区域粗参与度中图分类号:TP391 文献标志码:A 文章编号:1001-3695(2025)07-022-2086-10doi:10.19734/j. issn.1001-3695. 2024.10.0456

Abstract:Thisstudy focusedonspatialco-location patern mining,aiming toexplore theco-locationrelationships between spatialfeatures.Whiletraditionalmethodscanidentifyfrequentlyco-locationpatterns,theycannotdeterminethespecificspatialregions wherethese pattersoccur.Toaddress thisissue,thisstudyproposedanovel spatialco-locationpattrmining algorithmwithfrequentregions.Thealgorithmwasdividedintotwostages:thefirststageusedanagglomerativehierarchical clustering method topartition thespacebasedonthedatacharacteristics,andthenconfirmedthe proximityrelationships between instances within each cluster.Thesecond stage introduced theconcepts ofco-location patern presence regionsand regionalparticipationdegree,ndbasedonthese,itincrementallidentifiedthefrequentregionsofco-locationpaterns.To acceleratetheidentificationoffrequent regionsandthepattmmining process,thealgorithmquicklyconstructedcandidate regionsforhigher-orderpatternsbyexpanding theregionsofsub-paternsandusedrough participation degres tofilterout candidateregionsthatwereunlikelytobefrequent inadvance.Finally,extensive experiments onrealandsyntheticdatasets havedemonstratedthepeformanceoftheproposedalgorithmintermsof thenumberof spatialco-locationpaternswith frequentregions generated,theaccuracyoffrequentregions,andtheprecisionoffrequentregions.Onreal datasets,theaccuracyof thealgorithmrangesbetweenO.83andO.95.Furthermore,inexperiments evaluating thescalabilityofthealgorithm, whenthenumberoffeaturesinthedataset ismoderate,theperformanceof thePROC-Colalgorithmisapproximatelytwiceas fast as the current state-of-the-art multi-level algorithm.

Key words:spatialco-location patern mining;frequentregions;candidateregions;expandedregions;rough regional participation index

0 引言

空间并置模式挖掘1自2001年提出以来,取得了显著进展。(剩余25237字)

目录
monitor