基于强化学习协同进化算法求解柔性作业车间节能调度问题

  • 打印
  • 收藏
收藏成功


打开文本图片集

关键词:柔性作业车间调度;Q-learning;改进NSGA-II;多目标优化 中图分类号:TH165 文献标志码:A 文章编号:1001-3695(2025)07-016-2039-09 doi:10.19734/j. issn.1001-3695.2024.11.0479

Abstract:Fortheflexiblejob shopenergy eficientscheduling problem(EEFJSP),thispaperconstructedaFJSPmodel with theoptimizationobjectivesof minimizingthemaximumcompletiontimeand minimizingthetotal energyconsumption.Firstly, it proposedanadaptivealgorithmbasedonreinforcementlearningco-evolutionaryalgorithm(QNSGA-II)to characteriethe problemmodel.Secondly,it introduced theconceptsof state spaceandaction spaces,and designedareward-punishment functionbasedoheoverallaveragefinesandpopulationdiversitytoensuretheefectivenessofthealgoritinteiterative processInorder toimprovetheabilityof theglobal searchandlocalsearch,itproposedanimproved tabusearchalgorithmto updatethepopulationaftercrosoverandmutation.Inordertoimprovetheabilityof globalsearchandlocal search,itproposedanimprovedtaboosearchalgorithmtoupdate thepopulationaftercrosoverandmutation.Finall,itanalyzedtheeffectivenessoftheimproved tabusearch strategyandthe Q-learning parameteradaptationstrategy toverifythealgorithm’seffectiveness andsuperiority,anditcomparedtheproposedQNSGA-Iwithother multi-objectiveoptimizationalgorithmsto verify the superiority of the algorithms in solving the EEFJSP.

Key Words:flexible job shop scheduling;Q-learning;improved NSGA-I ;multi-objective optimization

0 引言

近几十年来,随着环境的不断恶化,政府呼呼节能减排,绿色制造已成为各国增强制造业核心竞争力的战略重点。(剩余20115字)

目录
monitor