基于完整超图神经网络的捆绑推荐模型

打开文本图片集
中图分类号:TP391 文献标志码:A 文章编号:1001-3695(2025)07-011-2003-08
doi:10.19734/j.issn.1001-3695.2024.11.0494
Abstract:Bundling recommendation enhances user experienceand boosts merchant sales performance byofering predefined setsof productcombinations.It also playsa significantrole in various serviceecosystems suchas video-on-demandandmusic playlistgeneration.Existingbundlingrecommendationmethodsoftenrelyonsharedmodel parametersormulti-task learning schemes,neglectingthedeep-levelconnectionsamongusers,items,andbundles,hichleadstoinformationlossandipacts the performanceofrecommendationsystems.Toadesstheseissues,tispaper proposedacompletehypergraphneuralnetwork (CHNN).Firstly,theframeworkconstructedacompletehypergraphtoexpressthetemaryelationshipsamong users,items,nd bundles.Theseternaryrelationshipsnotonlyincludedtheinterconnectionsamongusers,items,andbundled,butalsoecompasedthe interalconnectionswithinusersandbundles,effectivelydescribingtherelationshipbetweenproductbundlesand userpreferences.Scondly,temodelconsistsofaninitializationlayer,atripleconvolutionlayer,andapredictionlayer.The initializationlayergeneratedembeddingvectorsforeachuser,item,andbundle.Thetripleconvolutionlayerextractediforationfromthecompletehypergraphandleveragedtheuser-bundle graphand item-bundlegraph toenhancetherepresentations of users,items,andbundles.The predictionlayer providedrecommendationsbasedonthefinalembedding vectors.Through multi-layerrichconvolutionoperations,themodel fullyexploredtheassciationscontained inthecomplete hypergraphto achieve moreaccuraterecommendations.Experimentson tworeal-worlddatasets,NetEaseandYouShu,demonstratethat CHNN achieves an average improvement of 2.4% in recall and 2.75% in NDCG,outperforming existing baseline models and showcasing its effectiveness in the field of bundling recommendation.
Key words:graph neural network;bundle recommendation;hyper graph;graph convolutional network
0 引言
随着营销策略的快速发展,商家已经考虑向用户推荐一组商品[1-5]。(剩余19197字)