奖励回溯DQN驱动的多QoS工业网络时隙调度方法

打开文本图片集
中图分类号:TP393 文献标志码:A 文章编号:1001-3695(2025)07-029-2141-06
doi: 10.19734/j. issn.1001-3695.2024.12.0491
Abstract:Existing researchonmulti-QoSscheduling problems,due toitsreliancesolelyonimmediatereward feedback mechanisms,faces isues ofpoor scalabilityand resource wastagewhen handlingdelay-sensitivedataand mediadata withcontinuous transmision requirements inresource-constrained scenarios.To addressthis problem,this paper proposed aRB-DQN algorithm.Thisalgorithmadjustedthecurrntstate’spolicyevaluationbybacktrackingfutureinteractions,effectivelyidentifyingandresolving packetlosscausedbysuboptimalschedulingstrategies.Additionaly,itdesignedaLTTmetric,whichcomprehensivelyconsideredtheservicerequirements ofbothdelay-sensitivedataandmedia-typedata,alowing forweightadjustmentstoemphasizediferentpriorities.Extensivesimulationresultsdemonstratethattheproposedalgorithmsignificantlyreducesthe delayand jiterofdelay-sensitivedata while ensuringthe smothnessandstabilityof media-type data,outperforming other scheduling strategies.
Keywords:time slot scheduling;deep reinforcement learning;multi-QoS;reward backtracking
0 引言
随着工业互联网的快速发展,制造业正经历深刻的变革。(剩余15719字)