CN2Conv:面向物联网设备的强鲁棒CNN设计方法

  • 打印
  • 收藏
收藏成功


打开文本图片集

关键词:卷积神经网络;云辅助训练;少参数模型;鲁棒性

中图分类号:TP183 文献标志码:A 文章编号:1001-3695(2025)07-031-2154-07

doi: 10.19734/j . issn.1001-3695.2024.12.0500

Abstract:Theuseofcloud-assisted training forCNN with fewparameterscanenable theirdeploymentonresource-constrained IoTdevices.However,existing models with fewparameters suferfrom insuficientabilitytoextractcomplexdatafeatures and poor robustnessThis article proposed a CNN design method that was adaptable to complexdata and hadstrong robustness, calledthecombinednon-linearityconvolution kernelgeneration(CN2Conv).Firstly,itrandomlyselectedsomeconvolution kernels fromtheconvolutionallayersoftheCNNmodelasseedconvolution kernels,andusedmultiplegeneration functions to performonlinear transformationsontheseedconvolution kernels toobtain diversegenerationconvolution kernels.Secondly, thediferentgenerationfunctionsuseddiferenthyperparameterstocontroltheregularizationeffectofthemodelandiproved itsrobustness.Finall,itusedthefeatureapsgeneratedbytheconvoutionalkernls toperformchannelsuflingadconvlutional dimensionalityreductionoperations,whileusinggroupnormalization techniques toimprovethedistributionconsistency offeaturesandenhancetheabilitytocapturecomplex data features.InordertoverifytheefectivenessofCN2Conv,this paper carried outseveral experimentson CIFAR-10,CIFAR-1O0,CIFAR-10-Cand Icons-50datasets.Onthe CIFAR-10-C dataset, the accuracy of ResNet34 using CN2Conv is 8. 22% higher than the standard ResNet34,and 11. 86% higher than MonoCNN. Theresultsshowthatthe accuracyof the CNN modelbasedon CN2Convis beterthanthecomparison method on multiple datasets,and the robustness is significantly improved.

Key words:convolutional neural network (CNN);cloud-asisted training;less parameter model; robustness

0 引言

根据IDC最新发布的报告《WorldwideGlobalDataSphereIoTDeviceandDataForecast,2023—2027》显示[1,随着物联网技术的持续进步和广泛应用,全球物联网设备的数量预计将从2023年的167亿台激增至2027年的290亿台,其中2024年将达到190亿台。(剩余17424字)

目录
monitor