多尺度降噪自编码器的遮挡行人重识别研究与应用

打开文本图片集
中图分类号:TP391 文献标志码:A 文章编号:1001-3695(2025)07-040-2220-07
doi:10.19734/j.issn.1001-3695.2024.09.0372
Abstract:Toaddress theisueofocclusioninpersonre-identification(ReID)andalleviate theimpactof insufficientocclusion datasets,this research focusedonoccudedReIand proposedamultiscaledenoising autoencoder-based method.The method usedknowledgedistllationlearninginastudent-teachermodelforjointtraining,enablingthetransferofknowledgefromthe teachermodel tothestudentmodel.Usingartificiallyccludedimages totraintheautoencoder,compressedtheinputdatainto alatentspacefeaturerepresentation,decoded toreconstructdatathatcloselyresemblestheoriginalinput,achievingdenoising reconstruction.Basedonthetrainedautoencoder,further trainingwithealocludedimagesandincorporatinganatentionmo duletodiferentiatebetweenthefeaturerepresentationsofoludedimagesandholisticimages,enhancedthemodel’srobustnesand recognition performance foroccluded images.Experimentsdemonstrate thattheproposed methodachievessuperior performance onthe Occude-Duke,Occluded-ReID,and Partial-ReIDdatasets compared tocurrentlyadvancedoccluded pedestrianre-identification approaches.
Key words:person re-identification;occlusion;denoising autoencoder;knowledge distillation
0 引言
行人重识别(ReID)是计算机视觉领域的一个重要研究方向,旨在解决如何在不同监控摄像头中识别同一行人的问题。(剩余21145字)