多尺度降噪自编码器的遮挡行人重识别研究与应用

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:TP391 文献标志码:A 文章编号:1001-3695(2025)07-040-2220-07

doi:10.19734/j.issn.1001-3695.2024.09.0372

Abstract:Toaddress theisueofocclusioninpersonre-identification(ReID)andalleviate theimpactof insufficientocclusion datasets,this research focusedonoccudedReIand proposedamultiscaledenoising autoencoder-based method.The method usedknowledgedistllationlearninginastudent-teachermodelforjointtraining,enablingthetransferofknowledgefromthe teachermodel tothestudentmodel.Usingartificiallyccludedimages totraintheautoencoder,compressedtheinputdatainto alatentspacefeaturerepresentation,decoded toreconstructdatathatcloselyresemblestheoriginalinput,achievingdenoising reconstruction.Basedonthetrainedautoencoder,further trainingwithealocludedimagesandincorporatinganatentionmo duletodiferentiatebetweenthefeaturerepresentationsofoludedimagesandholisticimages,enhancedthemodel’srobustnesand recognition performance foroccluded images.Experimentsdemonstrate thattheproposed methodachievessuperior performance onthe Occude-Duke,Occluded-ReID,and Partial-ReIDdatasets compared tocurrentlyadvancedoccluded pedestrianre-identification approaches.

Key words:person re-identification;occlusion;denoising autoencoder;knowledge distillation

0 引言

行人重识别(ReID)是计算机视觉领域的一个重要研究方向,旨在解决如何在不同监控摄像头中识别同一行人的问题。(剩余21145字)

目录
monitor