基于双向数据流分析与图抽象嵌入的漏洞检测方法

打开文本图片集
关键词:深度学习;漏洞检测;数据流分析;图神经网络;网络安全
中图分类号:TP319 文献标志码:A 文章编号:1001-3695(2025)07-034-2176-08
doi:10.19734/j. issn.1001-3695.2024.10.0436
Abstract:Ascyberatacksandcybercrimesbecome increasinglysevere,theaccuracyandcomprehensivenessofsoftware vulnerabilitydetection faces significant challenges.To addressissuessuch as the dificultyofcapturing complex semanticsof interproceduralVulnerabilies,theincompleteanalysisofdataflowinformation,andthechallengesinextractingvulnerability paternfeatures,thispaperintroducedabidirectionaldataflowanalysis vulnerabilitydetectionmethodbasedonLLVMIRand Bi-GGNN—BiG-BiD(Bi-GGNNbasedonbidirectionalDFA).Firstly,it generatedLLVMIRbycompiling sourcecode with LLVM,andconstructedanICFG(interproceduralcontrolflowgaph)toincorporateinterproceduralvulnerabilitysemantics.In addition,this paper proposeda novelICFG abstract embedding method,called DLAE (DFA line-level abstract embedding), combiningabstractdataflowwithLLVMIRline-levelvulnerabilityfeatureembeddngtoaccuratelyrepresenpotentialvulnerabilitypatersinhecode.Finally,ittrainedBi-GGNNtodynamicallsimulatereachingdefinitionanalysisandlivevariable analysis withintheICFG,enableddynamic propagationandupdatingof abstractdataflows.ExperimentalresultsontheBigVul and Reveal public datasets show that BiG-BiD achieves a recall rate of 73.7% ,outperforming existing static analysis tools and deep learning-based vulnerability detection models by 5%~38% . Additionally,this method successfully detects 23 CVE vulnerabilitiesacrossfouropen-source projects,,thathaveneverseenbefore,,1Oof the vulnerabilitiesremainunpatched,demonstrating the effctivenessand generalization of the proposed method on vulnerability detection tasks.
KeyWords:deep learning;vulnerability detection;data flow analysis;GNN;cyber security
0 引言
近年来,高级持续性威胁(APT)攻击频发",网络空间安全已然成为国家安全不可或缺的核心部分,更是推动新时代经济高质量发展的战略基石。(剩余19121字)