结合自适应局部图卷积与多尺度时间建模的骨架行为识别

  • 打印
  • 收藏
收藏成功


打开文本图片集

关键词:局部图卷积;自适应图;多尺度时间建模;行为识别

中图分类号:TP391.41 文献标志码:A 文章编号:1001-3695(2025)07-037-2199-07

doi:10. 19734/j. issn. 1001-3695.2024.08.0370

Abstract:Giventheinherent topologicalstructurecharacteristicsofthehumanskeletonresearchersefectivelymodelskeleton datausing graph convolution networks forbehaviorrecognition.However,chalenges arisein skeleton behaviorrecognition methods becausetimeconvolutionreliesonafixedtopological graphstructureandfixed kemel size,whichmakes itdificult to adapttovariableactiontypes,osures,andbehavioraldurations.Thisrelianceleads to modeling erorsandafectsrecogition accuracy.To tacklethis isue,this paper proposed a skeleton behaviorrecognitionmethodthatcombined adaptivelocal graph convolutionwithmulti-saletemporalmodeling.Thismethodalowedfortheindependentdynamiccharacterizationoftheuman skeletalstructurethroughtheadaptivelocal graphconvolutionmodule.Itdesignedthemulti-scaletemporalmodeling moduleto accommodatebehaviorsofvaryingdurationswhilereducing thenumberof parametersandcomputational complexity.Furthermore,itintroducedthespatio-temporalDropGraphstructuretodynamicalladjustthegraphtopology,whichimprovedthe model's generalization ability and prevents overfiting. The experiments show that it achieves accuracy rates of 93.39% and 97.18% under the cross-object C-Sub and cross-view C-View benchmarks for the NTU RGB+D60 dataset,respectively,and (20 90.48% and 91.95% under the cross-object C-Sub and cross-set C-Set benchmarks for the NTU RGB+D 120 dataset,respectively.Theseresultsoutperformthoseofexisting behavioralrecognitionmethods,proving thesuperiorityof theapproach.

Key words:local graph convolution;adaptive graph;multi-scale time modeling;behavior recognition

0引言

作为计算机视觉领域的核心课题之一,行为识别在虚拟现实、智能家居和自动驾驶等多个领域中显示出重要性和广阔的应用潜力。(剩余18789字)

目录
monitor