互补盲点策略和U型Transformer的地震数据去噪

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:TP399 文献标志码:A 文章编号:1001-3695(2025)07-018-2056-08

doi: 10.19734/j. issn.1001-3695.2024.12.0516

Abstract:Randomnoisedenoisingcanefectivelyimprovesthesignal-to-noiseratio(SNR)ofseismicdata.Blindspot-driven unsuperviseddenoising methodsdonotrequirelabeleddataandcanautomaticallextractfeatures,buttheyignore noisecorrelations,leading tosuboptimalperformance.Toaddress thisisse,thispaperproposed thecomplementaryblindspotstrategy andU-shapedTransformerseismicdenoising framework(CBUTS).Firstly,thecomplementaryblind-spotstrategyusedtrace maskingandrandommaskingforcomplementarysamplingtoefectivelyweakenthespatialconnectionsof noise.Secondly,visibleblindspotlossfunction integrateddenoisedresultsfromboth non-blindandblindspots,reducing informationlo.Finall, the Transformer-based U-shaped blindspotnetwork(STU-Net)enhancedthecaptureof globalandlocal features,further weakened thenoisecorrelations,andmore accuratelypredictedvalidsignals.Experimentalresultsshow that,compared to classicalandadvancedsupervisedand unsupervised methods,CBUTSachievesbeterperformance indenoising noiseand preserving thecontinuityofseismicevents.Analysisandcomparisonconfirmtheapplicabilityof the method toseismicdata denoising.

Keywords:seismic data denoising;unsupervised;blind spot strategy;Transformer

0引言

由于勘探环境和测量设备等因素的影响,地震数据在采集过程中不可避免地会引入随机噪声。(剩余15864字)

目录
monitor