融合实体邻域信息的时序知识图谱实体对齐

  • 打印
  • 收藏
收藏成功


打开文本图片集

关键词:时序知识图谱;实体对齐;知识嵌入;实体活跃度;潜在邻居 中图分类号:TP391.1 文献标志码:A 文章编号:1001-3695(2025)07-017-2048-08 doi:10.19734/j. issn.1001-3695.2024.12.0513

Abstract:Thepurposeof entityalignment is tobuildacomprehensive knowledgegraphbymatching identical entitiesacross multi-source knowledge graphs.Existing methods primarilyfocus onstaticknowledge graphs,failing tofulluizetheabundanttemporal informationpresentinlarge-scaleknowledgestructures,andneglectingpotentialneighbors thatarenotdirectly conectedwhileintegratingentityneighborhood information.Toaddressthesechallenges,thispaperproposedanentityalignmentmodel,EA,totegateighborhoodiformationintomporalnowledgeaphs.irstly,itonstructede ralfeaturesofentitiesbycapturingtheiractivitiesatdiferentimepoints.Next,itintroducedaneighborhoodsimilaritymeasurement methodto identifypotential neighboring nodes,enabling message pasing acrossseparatechannelstoextractdiverse neighborhoodrepresentationsandcapturedomain-specificfeatures.Finallyitcombined the temporalandneighborhoodfeatures of ntitiestogenerateenrichedentityembeddings.Experimentalresultsdemonstratethatthe proposed modelimproves hits@1 by1.8,1.7,1.7,and1.9 percentagepointson fourreal-worlddatasets,DICEWS-1K/20andYAGO-WIKI50K5K/1K,compared tothebest-performing baselinemodels.Thesefindings validatetheefectivenessof the proposedapproach. Key words:temporal knowledge graph;entity alignment;knowledge embeddng;entity activity;potential neighbors

0 引言

知识图谱(knowledgegraph,KG)[1]以图结构的形式存储知识,图中的节点表示实体,节点之间的边表示关系。(剩余19392字)

目录
monitor