灾害应急场景下基于多智能体深度强化学习的任务卸载策略

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘 要:针对传统深度强化学习(deep reinforcement learning,DRL)中收敛速度缓慢、经验重放组利用率低的问题,提出了灾害应急场景下基于多智能体深度强化学习(MADRL)的任务卸载策略。首先,针对MEC网络环境随时隙变化且当灾害发生时传感器数据多跳的问题,建立了灾害应急场景下基于MADRL的任务卸载模型;然后,针对传统DRL由高维动作空间导致的收敛缓慢问题,利用自适应差分进化算法(ADE)的变异和交叉操作探索动作空间,提出了自适应参数调整策略调整ADE的迭代次数,避免DRL在训练初期对动作空间的大量无用探索;最后,为进一步提高传统DRL经验重放组中的数据利用率,加入优先级经验重放技术,加速网络训练过程。(剩余18552字)

目录
monitor