基于无监督深度图像生成的盲降噪模型

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘 要:鉴于有监督神经网络降噪模型的数据依赖缺陷,提出了一种基于无监督深度生成(UDIG)的盲降噪模型。首先,利用噪声水平评估(NLE)算法测定给定噪声图像中的噪声水平值并输入到主流FFDNet降噪模型中,所得到的降噪后图像(称为初步降噪图像)作为UDIG降噪模型的输入;其次,选用编码器—解码器架构作为UDIG模型的骨干网络并用UDIG模型的输出图像(即生成图像)分别与初步降噪图像、噪声图像之间的均方误差之和构建混合loss函数;再次,以loss最小化为优化目标,通过随机梯度下降(SGD)网络训练算法调整网络模型的参数值从而获得一系列生成图像;最后,当残差图像(噪声图像与生成图像之间)的标准差逼近之前NLE算法所测定的噪声水平估计值时及时终止网络迭代训练过程,从而确保生成图像(作为降噪后图像)的图像质量最佳。(剩余18005字)

目录
monitor
客服机器人