基于E2E Deep VAE-LSTM的轴承退化预测应用研究

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘 要:针对额外提取数据特征的方法需要花费大量时间和人力成本、轴承退化的线性预测精度低等问题,以及时序数据具有时间依赖关系的特点,提出了端到端的结合长短时记忆网络的深度变分自编码器模型(E2E Deep VAE-LSTM)用于轴承退化预测。通过改进VAE的结构,并结合LSTM,该模型可以在含有异常值的数据集上直接进行训练和预测;使用系统重建误差表征轴承退化趋势,实现了轴承退化的非线性预测。(剩余17975字)

目录
monitor
客服机器人