注册帐号丨忘记密码?
1.点击网站首页右上角的“充值”按钮可以为您的帐号充值
2.可选择不同档位的充值金额,充值后按篇按本计费
3.充值成功后即可购买网站上的任意文章或杂志的电子版
4.购买后文章、杂志可在个人中心的订阅/零买找到
5.登陆后可阅读免费专区的精彩内容
打开文本图片集
摘 要:插值估计可缓解推荐系统的稀疏问题,但其效果会影响预测性能。以logistic用户习惯(habit)评分加权改进Jaccard(HabJac)相似度量,并通过K近邻获得插补评分。进而,通过融合正则化奇异值分解(RSVD)技术提出了新的HISVD推荐算法,并获得最终预测。用户的习惯评分被定义为其出现频次最高的评分,并且logistic权值同评分与习惯评分之间的欧氏距离正相关。(剩余15840字)
登录龙源期刊网
购买文章
结合评分习惯加权的稀疏矩阵插值推荐技术
文章价格:6.00元
当前余额:100.00
阅读
您目前是文章会员,阅读数共:0篇
剩余阅读数:0篇
阅读有效期:0001-1-1 0:00:00