学习点云邻域信息的三维物体形状补全

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘 要: 在现实世界中,点云数据的采集方式有激光雷达、双目相机和深度相机,但是在机器人采集过程中由于设备分辨率、周围环境等因素的影响,收集到的点云数据通常是非完整的。为了解决物体形状缺失的问题,提出了一种使用局部邻域信息的三维物体形状自动补全的网络架构。该架构包括点云特征提取网络模块和点云生成网络模块,输入为缺失的点云形状,输出为缺失部分的点云形状,将输入与输出点云形状进行合并完成物体的形状补全。(剩余7980字)

目录
monitor