TCN-KT:个人基础与遗忘融合的时间卷积知识追踪模型

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘 要: 智慧教育的热门领域知识追踪(KT)被视为序列建模任务,其主要关注点和解决方式都集中在循环神经网络(RNN)上。但RNN通常会面临梯度消失或者梯度爆炸等问题,且训练时间和设备要求都过于严苛,针对以上问题,提出融合学习者个人先验基础和遗忘因素的时间卷积知识追踪模型(TCN-KT)。首先利用RNN模型计算得到学生个人先验基础,然后使用梯度稳定、内存占用率更低的时间卷积网络(TCN)预测学生下一题正误的初始概率,最后融合基于学生基础的遗忘因素得到最终结果。(剩余15323字)

目录
monitor