基于深度学习的多模态医学影像分割研究综述

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘 要: 多模态医学影像分割是医学影像分析领域的研究热点之一。有效利用不同模态影像的互补信息,从多种层面提供病灶区域及其周围区域的更多信息,可提高临床诊断的准确性。为了分析深度学习在多模态医学影像分割领域的研究现状及发展方向,对该领域近些年的分割方法进行了整理和研究。在分析它们的特点及存在的问题的基础上,对未来研究方向进行了展望,可帮助相关研究者全面、快速地了解该领域的研究现状、存在的问题和未来研究方向。(剩余33952字)

目录
monitor