基于张量奇异值理论的交通数据重构方法

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘 要: 由于探测器和通信设备的故障,交通数据的缺失是不可避免的,这种缺失给智能交通系统(ITS)带来了不利的影响。针对此问题,运用张量平均秩的概念,对张量核范数进行最小化,从而构建了新的低秩张量补全模型,并且在此基础上,基于张量奇异值分解(T-SVD)和阈值分解(TSVT)理论,分别使用坐标梯度下降法(CGD)和交替乘子法(ADMM)对模型进行求解,提出两个张量补全算法LRTC-CGD和LRTC-TSVT。(剩余10971字)

目录
monitor