PNet:融合注意力机制的多级低照度图像增强网络

打开文本图片集
摘 要: 低照度图像存在亮度低、噪声伪影、细节丢失、颜色失真等退化问题,使得低照度图像增强成为一个多目标增强任务。现有多数增强算法不能很好地在多个增强目标上取得综合的性能,对此,提出PNet——融合注意力机制的多级低照度图像增强网络模型,通过构建多级串联增强任务子网,结合注意力机制设计多通道信息融合模块进行有效特征筛选及记忆,网络以序列方式处理图像流,协同渐进式完成图像全局自适应亮度提升、噪声伪影抑制、细节恢复、颜色矫正等多任务。(剩余17626字)