多策略协同改进的阿基米德优化算法及其应用

打开文本图片集
摘 要: 针对阿基米德优化算法(AOA)寻优过程中存在全局搜索能力弱、收敛精度低、易陷入局部最优等缺陷,提出一种融合多策略的阿基米德优化算法(MAOA)。首先,采用随机高斯变异策略选取适应度优的多个个体引导种群向最优解区域寻优,增强全局搜索能力;其次,利用多种混沌映射的随机性、遍历性和多样性,引入局部混沌搜索策略扩大混沌空间的搜索范围,提高算法的局部开发能力;同时,为了协调算法的全局勘探和局部开采能力,提出一种非线性动态密度降低因子;最后,利用Lévy飞行引导机制的黄金正弦策略对种群位置进行扰动更新,增加迭代过程中种群的多样性,提高算法跳出局部最优的能力。(剩余13594字)