注册帐号丨忘记密码?
1.点击网站首页右上角的“充值”按钮可以为您的帐号充值
2.可选择不同档位的充值金额,充值后按篇按本计费
3.充值成功后即可购买网站上的任意文章或杂志的电子版
4.购买后文章、杂志可在个人中心的订阅/零买找到
5.登陆后可阅读免费专区的精彩内容
打开文本图片集
摘 要:现有的基于深度学习的单张图像超分辨率(single image super-resolution,SISR)模型通常是通过加深网络层数来提升模型的拟合能力,没有充分提取和复用特征,导致重建图像的质量较低。针对该问题,提出了基于特征融合和注意力机制的图像超分辨率模型。该模型在特征提取模块使用残差中嵌入残差(residual in residual,RIR)的结构,该网络的特征提取模块由包含多个残差块的残差组构成,并且在每个残差组内进行局部特征融合,在每个组之间进行全局特征融合。(剩余13935字)
登录龙源期刊网
购买文章
基于特征融合和注意力机制的图像超分辨率模型
文章价格:6.00元
当前余额:100.00
阅读
您目前是文章会员,阅读数共:0篇
剩余阅读数:0篇
阅读有效期:0001-1-1 0:00:00