基于自注意力机制和双向GRU神经网络的深度知识追踪优化模型

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘 要:针对现有深度知识追踪模型存在输入习题间复杂关系捕获能力弱、无法有效处理长序列输入数据等问题,提出了基于自注意力机制和双向GRU神经网络的深度知识追踪优化模型(KTSA-BiGRU)。首先,将学习者的历史学习交互序列数据映射为实值向量序列;其次,以实值向量序列作为输入训练双向GRU神经网络,利用双向GRU神经网络建模学习者的学习过程;最后,使用自注意力机制捕获练习题之间的关系,根据双向GRU神经网络输出的隐向量和注意力权重计算学习者正确回答下一问题的概率。(剩余20538字)

目录
monitor
客服机器人