基于机器学习的设备异常分析研究

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘要:文章通过对烟草企业生产线自动化生产设备的异常诊断问题进行分析,根据生产设备运行时生产数据的采集,选择了CNN和LSTM网络这两种机器学习的算法对设备异常诊断进行了研究。通过对仿真实验的数据对比,选择了LSTM网络作为设备异常诊断模型的核心算法。通过算法的仿真实验,以及烟草企业的实际需求,验证了LSTM网络算法在异常诊断上的可用性和先进性。(剩余5411字)

目录
monitor
客服机器人