基于胸片的迁移学习对活动性肺结核与社区获得性肺炎的鉴别诊断

打开文本图片集
[Abstract]Objective ∵ Toexplore the value of the model constructed by transfer learning based on chest X-rays in the diferential diagnosisforactivepulmonarytuberculosis(APTB)andcommunity-acquiredpneumonia(CAP).Methods:Chest X-raysof715APTBpatientsand513CAPpatientswereretrospectivelycolectedandrandomlydividedintoatraining set(614 cases),a validation set(369 cases)and atest set(245 cases)according to the 5:3:2 ratio.Four pre-training networksincludingVGG16,Xception,ResNet5OandMobileNetwereusedfortransferlearning.Afterthetraining,themodels withthehighestacuracyofthefourpre-trainingnetworksinthevalidationsetwereselectedastheoptimalmodels,ndthe diferentitiondegree,calibrationdegreeandnetbenefitofthefouroptimal modelsinthetestsetwereevaluated.Results: Afterthetraining,VGG16andResNet5OfittdwellwhileXceptionandMobileNethadoverfitngphenomena.Themodels withthehighestaccuracyofthefournetworksinthevalidationsetwereappliedtothetestset,andtheresultsshowed thatVGG16,ResNet5O,andMobileNetoptimalmodelshadhigherAUCscomparedtoXceptionoptimalmodelandradiologist model(all P<0.05 ).The calibration curve showed that VGGl6,ResNet5O,and MobileNet optimal' models and radiologist modelhadgoodcalibration.Decisioncurveanalysisshowedthattheoptimalmodelsofthefournetworkswerewithinalarge probabilitythresholdrange,whichmadethepatientsnetbenefit,andtheoptimalmodelofVGG16madethepatientsnet benefitthemost.Conclusions:TransferlearningtechnologyhashighclasificationperformanceinidentifyingAPTBand CAP in chest X-rays,VGG16 has the highest performance among the four kinds of pre-training networks.
[Key words] Tuberculosis,pulmonary;Community-acquired pneumonia; Convolutional neural networks
结核病死亡人数在全球传染性疾病中位居第1。(剩余8900字)