基于SAGAN数据增强与双向AT-LSTM神经网络的黄芪源

打开文本图片集
中图分类号:TP391.4 文献标识码:A 文章编号:2096-4706(2025)21-0077-06
Astragalus Membranaceus Traceability Based on SAGAN Data Enhancement and Bidirectional AT-LSTM Neural Network
LYUYuexian,ZHAOFeiyan,CHENGJing,FANJilan (SchoolofPhysicsandElectronic InformationEngineering,NingxiaNormalUniversity,Guyuan756o99,China)
Abstract:Inorder to explore theapplicationofSelf-Atention Generative AdversarialNetwork (SAGAN)andBidirectional Attention-basedLongShort-TermMemoryNetwork (BidirectionalAT-LSTM)inthetraceabilityofAstragalusmembranaceus origin,thispaperuses theRamanspectraldataofAstragalusmembranaceussamples fromIer Mongolia,Schuan,hanxi, andGansu provinces for experiments.The dataof 16O original samples of Astragalus membranaceus Raman spectroscopyare enhancedbySAGAN,andthesamplesize isexpandedto5Oo.TheresultsshowthattheBidirectionalAT-LSTMmodelchieves a classification accuracy of 97% in the recognition task of Astragalus membranaceus from four producing areas.Compared with thebenchmarkmodelssuchasRandomForest,SVM,XGBoost,andKN,theclassificationaccuracyofthemodelisimpoed by no less than 2.75% ,and it performs best in the origin classification task of Astragalus membranaceus in Iner Mongolia andGansu.Theresearchshows thattheBidirectionalAT-LSTMmodelhassignificantadvantages inthe spectraltraceabilityof Astragalus membranaceus,which canopenupanew way forthe qualitycontrolandtraceabilityresearch ofTraditional Chinese Medicine.
KeyWords:SAGANdata enhancement; LSTMNeural Network; Astragalus membranaceus traceability;Raman spectroscopy
0 引言
黄芪被认为是一种强效免疫调节剂,能够增强机体免疫功能[],提升抗肿瘤免疫效应,可用于临床免疫功能调节及肿瘤等疾病的辅助治疗。(剩余7276字)