一种基于DeepSeek的生态环境机器学习方法的应用研究

打开文本图片集
中图分类号:TP181;X830.2 文献标识码:A文章编号:2096-4706(2025)21-0039-05
Research on the Application of an Ecological Environment Machine Learning Method Based on DeepSeek
WAN Bin (Wuhan Ecologyand Environment Bureau Educationand Communication Center,Wuhan 43oo15,China)
Abstract: With the exponential growth of the scale andcomplexity ofenvironmental monitoring data,Machine Learming has become an effective means for processng environmental Big Data.However,theinterdisciplinarycognitive difference limits the in-depthapplicationofmachine learning methods inenvironmentalresearch.This study proposesa“DeepSeek + MachineLearning+environment”collaborativeparadigm.Taking thedataofthenational environmentalairqualityautomatic monitoring network in Wuhan in2023 asanexample,the DeepSeek platform isused tocomplete the whole process of data preprocessing,LSTM/XGBoostmodeling,trainingandhyperparameteroptimization.ThefialmodelRMSEis6.475and R2 is 0.871,which is 10.56% higher than the benchmark XGBoost.This result significantly reduces the technical threshold for noncomputer background researchers to apply Machine Learning.
Keywords:DeepSeek; Machine Learning; environmental Big Data; model optimization
0 引言
生态环境系统具有多物质耦合、多因素交互与多过程协同的典型特征,由此衍生的环境大数据通常呈现高维度属性。(剩余6843字)